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Abstract \ve have shown in an malytical way supported by intuitive arguments that all the 
eigenstates of an infinite quasiperiodic chain can be of extended nature in m unusual way. The 
well known copper mean chain provides such an example. Earlier works, based on calculations 
with systems having finite sizes, showed the co-existence of localized and extended states for 
this particular system. Within the framework of the real space renormalization group scheme we 
transform a perfectly ordered chain and a copper menn chain into a period doubling sequence 
for which an area-preserving dynmical map is already in existence. The mcursion relations 
for the Hamiltonian parameters of the effective period doubling sequences generated from an 
ordered chain and a copper mean chain are then compared to extract informatioo regarding the 
true nature of the eigenstate~ of the latter. 

1. Introduction 

The interest in the nature of electronic eigenstates in onedimensional (ID) systems without 
any translational invariance has recently been rekindled, particularly since the success in 
fabricating aperiodic superlattice structures in the laboratory [I]. While it is well known 
that for a perfectly ordered chain all the wavefunctions are extended (Bloch functions), 
whereas for a random distribution of potentials they are exponentially localized, a new class 
of wavefunctions is found to exist in the case of I D  quasiperiodic sequences [2]. 

The Fibonacci chain quasicrystal is the most extensively studied example of a ID 
quasiperiodic sequence in which the wavefunctions have been categorized as 'critical' 
(neither localized, nor extended in the usual sense), and the corresponding energy spectrum 
has been shown to be a Cantor set [2]. However, several extensions and generalizations 
of the Fibonacci family have attracted considerable attention recently [3] due to variations 
exhibited in their dynamical behaviour and the excitation spectra. In a particular type of 
generalization [4] binary quasicrystalline chains are generated by two kinds of inflation 
rule, viz. L + L"S. S + L (class I) and L -+ LS", S -+ L (class 11) with n > 1. L 
and S are two fundamental building blocks constituting the sequence. n = 1 generates the 
popular golden mean Fibonacci lattice. It has been illustrated [4] that systems belonging 
to class I exhibit a dynamical area-preserving map similar to the Fibonacci sequence with 
the golden mean, and the energy spectrum remains, in general, a Cantor set. On the other 
hand, the dynamical map for systems belonging to class U has been shown to be an area 
(volume) non-preserving map. Such systems apparently have no constant of motion and 
their excitation spectra are found to be qualitatively different from those belonging to class 
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I. For example, Kolar and Ali [SI have studied magnetic excitations in a copper mean 
superlattice (n = 2 in class 11) using finite-sized chains. Their analysis shows that the 
spectrum of the copper mean superlattice is not Cantor like in the entire frequency regime. 
They report that the spectrum contains almost continuous clusters of bands with a mixing 
of self-similar and regular patterns. The electronic spectrum of a simple copper mean chain 
(cMC) was also shown to have a similar behaviour [6]. Severin er a1 [7] have reported a 
class of aperiodic systems in ID in which extended eigenfunctions of both quasiperiodic and 
periodic nature in a sub-class of the CMC have been found. All these studies were made 
on finite-sized systems. Chakrabarti and Karmakar [SI dealt with an infinite CMC using 
real space renormalization group (RSRG) techniques. The infinite CMC can be generated by 
repeated application of the inflation rule L -+ LSS and S -+ L as mentioned earlier, where 
L and S stand for two types of bond. say ‘long’ and ‘short’. The lattice thus consists of four 
different vertices LY, @, y and 6 flanked by L L ,  L-S, S-L and S S  bonds on both sides [8], 
The nearest-neighbour hopping integrals are assigned two values viz. t L  and for hopping 
across L or S bonds respectively. In this model, the existence of extended eigenstates had 
been reported [SI. Later it was pointed out by Zhong et a1 [9] that the on-site model of 
a CMC consisting of two types of atom A and B arranged in the copper mean sequence 
supports an extended eigenstate at E = E B ,  EB being the on-site potential for the B type 
atom. In a very recent publication [IO] it has been illustrated that the LY vertices, always 
occurring in pairs (a-) at all length scales of the CMC, give rise to a full hierarchy of 
extended states each occurring at E = E$) ,  where the superscript (n )  stands for the nth 
stage of renormalization. The number of allowed energy values increases with the progress 
of iteration. The totality of all these energies constitutes the entire spectrum of the extended 
states for the CMC. These eigenenergies form minibands in energy space, the existence of 
which was detected previously through numerical calculations [SI. Looking carefully at 
these results we face an extremely interesting situation. The RSRF transformation can, in 
principle, be carried out to infinite iterations. Each iteration unveils a set of extended states 
in the energy spectrum of the CMC. The obvious question that arises out of this observation 
is does this method exhaust all rhe eigenstates ofthe system? If the answer is ‘yes’, then 
the entire eigenvalue spectrum of an infinite CMC will consist of extended states only! If 
the answer is ‘no’, then can we say anything about the nature of ‘other’ eigenstates, which 
may not be  a solution of the equation E =E:)? 

As is obvious from the above results and the discussion, the true character of the energy 
spectrum, particularly the nature of the eigenfunctions of a CMC (and consequently, its 
followers in class II) is far from clearly understood. The scenario appears to be changing in 
a much more exciting way, particularly since the analysis of Si1 etal [IO]. In this article, we 
try to look deeper into this aspect of the problem. Our analysis leads to the understanding 
that, an infinite CMC should sustain extended eleclronic eigenstates only. This, to our mind, 
is highly exciting because the CMC provides a remarkable example of a ID chain where, 
in  spite of the absence of any translational invariance, all the eigenstates appear to be 
delocalized (in a generalized Bloch sense). 

A good way of examining the nature of electronic eigenfunctions of a ID chain has 
been the R S R C  method. The method can be easily implemented in the case of a self-similar 
lattice such as a CMC. Within the framework of the RSRG scheme one generally observes 
the flow pattern of the hopping integrals of the Hamiltonian describing the system under 
successive renormalization. As described in [IO], the behaviour of the on-site potential 
under renormalization also plays an important role in understanding the extended nature 
of eigenfunctions in systems without translational invariance. However, to check whether 
a specific energy eigenvalue corresponds to an extended state or not, by studying of the 
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flow of the Hamiltonian parameters under RSRG, a precise evaluation of the eigenvalue 
is required. In a quasiperiodic system locating an energy eigenvalue exactly becomes a 
formidable task, and, becomes practically impossible when the chain length goes to infinity. 
This is mainly because of the highly fragmented band structure generally encountered in 
such systems. Any numerically determined eigenvalue for a given finite system size may as 
well be found to be in a gap (or in the immediate neighbourhood of a gap) for a system with 
a bigger chain length. The entire flow pattern of the Hamiltonian parameters can therefore 
change drastically, and can even give wrong information regarding the true nature of the 
eigenstates unless the true energy eigenvalue is considered. 

In the present article we avoid the task of a precise determination of the entire eigenvalue 
spectrum of a quasicrystalline chain by observing the related dynamical map and the flow 
of the Hamiltonian parameters under renormalization. In what follows we describe how a 
known non-linear map of a period doubling sequence can be exploited to achieve this goal. 

2. Method and results 

We start by considering an infinite period doubling sequence consisting of two types of 
bond L and S generated according to the inflation rule L + LS and S + LL. The trace 
map and the spectral properties of this sequence have already received some attention [ 1 I]. 
The PO sequence can be thought to be a member of the copper mean class in the sense 
that starting from the initial building block ‘L’, say, both the lattices can be recursively 
generated following the rule Gk = Gk-jGk-2Gk-z for k > 2, with Go = L, GI = LS 
for the PO sequence, and GO = L and Gt = LSS for the ChlC [8]. Gk stands for the 
kth generation of the chain. The ratio of the number of L bonds to that of S bonds in 
the thermodynamic limit is unity for the CMC, whereas it is two for the PD chain. The 
trace maps for these two systems are of course different 15, 111. The CMC does not have a 
polynomial invariant independent of energy, whereas the PD chain has indeed been shown 
to possess one. However, what has been unobserved so far is that a CMC with two different 
bonds L and S is a simple ‘superlattice’ version of a PO chain. One can ‘coalesce’ two 
consecutive S bonds in a CMC to get an effective PD chain where the on-site potentials and 
the hopping integrals become functions of energy in general. To see what this means, one 
can easily verify that in any arbitrary generation of a CMC the ‘S’ bonds always come in 
pairs and the ‘L’ bonds are either single, or in triplets. On the other hand, in a PD chain, the 
’S’ bonds are always single, whereas the L come in singlets or triplets only, as in the case 
of a CMC. If one numbers the bonds from the left, say, in a CMC considering the pairwise 
occumng S bonds as a single unit, one finds that the L bond and the ‘block’ of S bonds 
taken together are indexed exactly in the same way as in a PO chain with S bonds appearing 
singly. Considering an S-S pair as a single ‘unit’ in an infinite CMC also brings down the 
ratio of the number of L and ‘SS’ blocks to two, the same as that for a PD chain with an 
isolated S. We illustrate the indexing below: 

CMC L ss L L L s L s L s L L L s L L . . .  
v 

1 2  3 4 5  6 7 8 9 IO 1 1 1 2 1 3  14 1 5 1 6  

PD L s L L L  s L s L s L L L s L L... 
I 2 3 4 5 6 7 8 9 10 I 1  I2 13 14 15 16. 
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Figure 1. Ponions of lhe infinite chains illustrating Ihe Vansformations of (a )  a perfectly ordered 
chain and (6) B copper mean chain into a period doubling chain (lhc lower line in both cases). 

It can be checked that this is true for arbitrarily long chains. Coalescing can be achieved 
by decimating the 6 sites in the CMC. as will be explained later. 

A perfectly ordered chain can also be trivially converted into an effective PD chain 
by forcing the PD sequence on it. We illustrate such transformations in figure I. Using 
the deflation rules for the PD chain one can now obtain, within the framework of RSRC 
techniques, recursion relations for the Hamiltonian parameters of the effective PD chains, 
which are derived from a CMC and an ordered lattice, Since the basic functional forms of 
the recursion relations turn out to be the same in both cases, it is really tempting to make 
a detailed comparative study of the evolution of the parameter space in these two different 
cases to compare the qualitative nature of the spectrum of the CMC, particularly the nature 
of the wavefunctions. with that of the well known ordered case. Such a comparative study 
has already been useful in identifying extended states in  a generalization of a golden mean 
Fibonacci chain 1121 and a CMC [lo]. We shall proceed along this line. However, before 
making this comparison we describe some results of the RSRC analysis of the PD chain in a 
little detail for a better understanding of our arguments. 

We describe an infinite PD chain using the standard tight-binding Hamiltonian 

where E,, is the on-site potential at the nth site, and r,, is the nearest-neighbour hopping 
integral. In the case of a PD sequence the on-site term takes on three values, E, ,  E# and c y  
corresponding to the vertics flanked by L-L, L S  and S-L pairs of bonds (figure 1). The 
nearest-neighbour hopping integrals can take on two values fL  and f~ corresponding to the 
hopping of an electron across 'L' and 'S' bonds respectively. We can now use the inflation 
rule for the PD sequence in the opposite way to decimate a chosen set of sites, which is  
a standard way of using RSRG techniques [lo, 121. This produces a new chain with the 
Hamiltonian parameters satisfying a set of recursion relations, viz. 
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= E y  + &(E - ea) + t : / (E - €6) 
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6; = Ea +:;/(E - E ~ )  + $ / ( E  - E P )  (2) 

tl= tLts/(E - €6) 
:; = $ / ( E  - E = ) .  

We Can now reduce the dimensionality of the parameter space by defining 

U’ = ( E  - E u ) j t L  

X = ( E  - E p ) / t L  

Y = ( E  - E y ) / t L  

and 

z = t S / t L .  

U’, X, Y and Z are then found to satisfy the following non-linear recursion relations: 

Here, the subscript n refers to the stage of the RSRC operation. Using the set of equations (3) 
we have been able to calculate a quantity 

IPD = wn+Z/z - (w,” - 2) Wn+l/z + 1 

which is independent of the iteration index n, i.e. remains invariant under successive 
RSRG operations. IPo is also found to be independent of energy E in this case. The 
existence of such an invariant generally indicates a Cantor set energy spectrum and critical 
wavefunctions. as has been observed earlier in the case of a Fibonacci chain with a different 
approach [Z]. In our case Zpo plays an important role as will be clear from the discussion 
that follows. 

Our objective in the present investigation, however, is simply to use the non-linear 
recursion relations (3) together with the invariant to unravel the nature of eigenfunctions of 
the CMC, so we leave aside the detailed study of the map (3) as a separate issue. Instead, 
we first take a perfectly ordered chain with site energy E and nearest-neighbour hopping 
integral f and force the PD sequence onto it (figure I@)), as proposed earlier, to map it 
‘artificially’ onto an effective PD chain with site energies and hopping integrals given by 

E;’) = E + 2 tZ / (E  - E )  

E:’ = E?’ = E +?/(E - E )  

t f )  = t Z / ( E  - E )  

t?’ = t .  

(4) 
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The superscript (0) now stands for the initial values of the Hamiltonian parameters for the 
effective PD chain. I t  is important to appreciate that, since we have forced the ordered chain 
to have an effective PD chain configuration, the evolution of the entire parameter space under 
RSRG according to equations ( 2 )  and (3), with the initial values given by equation (4), will 
give us information about the nature of eigenstates of the ordered chain only. Within the 
same framework one can easily calculate the density of states (DOS) to check that the DOS 
for the ordered chain is exactly reproduced as expected. It is a well established fact that all 
the eigenstatets of a perfectly ordered linear chain are extended (Bloch functions). When 
we study the flow pattern of the Hamiltonian parameters under RSRG iterations for such 
an effective PD chain, we observe that for any energy E within the band, at every stage 
n of renormalization, we have the relationship e:) # cf’ = E!’, and that the hopping 
integals never flow to zero, indicating that at any scale of length there is a non-vanishing 
connection between nearest neighbours (on that scale of length), i.e. states are all extended 
[12]. Such a typical pattern exhibited by the renormalized values of the site energies and 
the hopping integrals can therefore be taken to be a signature of extended eigenfunctions 
[ 12, 131. A similar observation can be made in the case of a Fibonacci chain with the golden 
mean. Taking the ordered limit, i.e. setting ci = 0 for i = a, ,6. y and t L  = ts, one finds 
that the parameter space evolves in the same way. However, taking the ordered limit of a 
quasiperiodic chain may prove to be different from generating an ‘effective’ quasiperiodic 
chain by forcing the appropriate inflation rule on a periodic lattice. For example, the ordered 
limit of the PD sequence yields IPD = 0 independent of energy, whereas the invariant in the 
‘effective’ PD in our case turns out to be energy dependent. The invariant corresponding to 
this effective PD chain can be easily obtained by selecting the initial values for the on-site 
terms and the hopping integrals from (4), and the initial value (and subsequent values also) 
of the invariant is given by 

I o ~ o  = ( - ; ? ) E  + (1 + ~ / 2 t ) .  

IoRD is a continuous function of energy, but remains finite and fixed at every iteration for 
E lying within the band only. 

We now turn our attention to the CMC. As has already been pointed out, we find that 
in a CMC defined by two types of bond L and S (with corresponding hopping integrals r~ 
and ts respectively) we can classify the site energies as E,, cp, cy and €8 [8]. If we now 
decimate the 6 type sites, we end up with an ‘effective’ PD chain with the site energies and 
the hopping integrals given by 

Recalling our earlier discussion in the context of an ordered chain, we now know that the 
evolution of the parameter space of this ‘new’ PD chain will now give us all the information 
about the nature of eigenstates of a CMC. Once again, we have verified that the CMC density 
of states is exactly reproduced, as previously obtained [SI. This is of course expected since 
the underlying lattice is basically a CMC. One can now look at the nature of the invariant 
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associated with the non-linear mapping for this new PD chain generated from a CMC. It is 
extremely interesting to observe that a straightforward algebra yields 

ICMC = m E  f N 

where 

2 2  2 m = ( E ~ E ~  - C ~ E J  - E , E ~  + E ,  - tL)/2tLfs 

and 

In this expression for ICMC the on-site terms and the hopping integrals refer to those in the 
original CMC. The striking equivalence in the forms of the invariants lono and ICMC can 
now be exploited to extract information about the eigenstates of the latter chain as explained 
in the following section. 

3. Discussion 

One can always tune the intial values of the on-site terms and the hopping integrals for the 
CMC so as to obtain an identical value for the invariant as that in the case of a perfectly 
ordered chain with some other values of E and f .  The invariant remains unchanged, and finite 
at every stage of renormalization for all energy eigenvalues. This simple statement, in our 
view, has a deeper significance. An identical invariant for the ordered chain and the CMC in 
this situation means that the parameter space for these two different cases must have evolved 
in the same qualitative manner (of course, not with the same values for different parameters) 
so that the tip of the four-dimensional vector with 'components' W, X, Y and 2 remains on 
the same invariant 'line' for both the lattices at each stage of renormalization. It is highly 
important to appreciate that in this scheme we are simply using the recursion relations for 
the PD chain as a 'black box', and if the input values for the Hamiltonian parameters from 
two differnt systems going into this 'black box' yield identical invariant 'surfaces' in the 
parameter space, it will be impossible to distinguish, from a renormalization group point of 
view, between the qualitative nature of the eigenfunctions of those two systems. The above 
idea can be clarified even more taking specific models. 

Table 1. List of a few eigenvalues of 3 CMC with 6i = 0. i = z, p. y .  6 and t s / t L  = 2 for 
which there always exists a corresponding eigenvalue of a perfectly ordered chain with E = 0 
and I = - I .  The invanant. for the two cases are found to be exactly equal to each other. 

Some of the eigenvalues Corresponding eigenvalue% Invariant in 
of a CMC of an ordered chain both cases 

0.0 0.0 1.0 
-13.6379 x IO-' -34.0950 x IO-* 0.8295 
13.6379 x IO-' 34.0950 x IO-% 1.1704 
-3.0 -74.9988 x IO-? 0.6250 
3.0 75.0979 x IO-* 1.3755 

-30.2325 x IO-' -75.5820 x IO-? 0.6221 
30.2325 x IO-' 75.5810 x IO-? 1.3779 
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3.1. The transfer model 

We argue for a transfer model version of the CMC. Setting all the E values to zero and 
t S / t L  = 2, we find that 

1CMC = (+)E + I .  

The form is exactly equivalent to that of an ordered chain. Not only that, but even looking at 
the initial values of the Hamiltonian parameters for the PD chain obtained from the CMC, we 
find that €Ao) # E;) = <bo), a pattern typically observed at the initial stage, and subsequently 
at all stages of renormalization in the c a e  when a PD chain is created From a perfectly 
ordered chain. Therefore, for some initial E and t the evolutions of the entire parameter 
space in these two basically different transformations (i.e. ordered + PD and CMC + PD) 
start with the same pattern in the distribution of the on-site potentials and hopping terms, 
and can end up with the identical invariant. This happens for every energy eigenvalue for 
the CMc, as for any value of such energy eigenvalues one can always define E and t for a 
corresponding ordered chain to achieve ICMC =/ORD. for example, we have provided in 
table I a list of several selected eigenvalues for the CMC together with the value of I ~ M C  in 
each case. In the same table we also exhibit those eigenenergies of a perfectly ordered chain 
with E = 0 and I = -1 that give rise to an identical invariant for the corresponding CMC 
case. Though the CMC eigenvalues illustrated in the table are all solutions of the equation 
E = $1, and therefore are naturally extended, the mapping can be done for all eigenvalues. 
It means that the ‘black box’ containing the recursion relations (2) (or, equivalently, (3)). 
if fed with similar distributions in the values of the Hamiltonian parameters in the two 
cases, becomes insensitive to the nature of the distribution in the renormalized values of the 
parameters, and consequently to the nature of the eigenfunctions. This strongly suggests that 
the eigenfunctions for the CMC, therefore, cannot be distinguished from those of an ordered 
lattice asfar as their e.vtendednature is concerned. By the word ‘extended’ we of course do 
not mean Bloch functions, which are only possible in translationally invariant systems. Such 
states can be termed ‘generalized Bloch functions’. It is however important to realize that 
in the case when the parent lattice is an ordered one, the desired flow pattern sets in from 
the very first stage of renormalization. In the case of a CMC, the relationship beween the 
site energies sets in like that of an ordered lattice only at a particular length scale and then 
continues to do so. The length scale at which this similarity is observed for the first time 
depends on the energy eigenvalue. For example, selecting the parameters for the ordered 
lattice as E = 0 and t = -1 we find th3t for E = 0, ICMC = IoRD from the very beginning of 
the RSRC operation and the flow pattern in the parameters for the effective period doubling 
chain derived from a CMC starts giving the desired indication of an ordered like behaviour 
(i.e. E?) # $‘) = E ; )  and rL = ts) from the very first stage, i.e. from n = 1 for the effective 
PD chain. On the other hand, the equality (inequality) in the values of E ([)is observed from 
the third step of RSRG transformation for E = 3 and from step 4 for E = 1.363798025 8, 
and so on, when the input comes from the original CMC. This observation actually indicates 
a genealogical difference between various extended eigenfunctions in a CMC arising out of 
the o l e  clustering at different length scales, as pointed out in [lo]. What is interesting from 
the present point of view is that all the finite values of ICMC should lie between zero and 
two, as can be checked observing the global band edges of a CMC electronic density of states 
spectrum [8], and that each point in the 1c~c-E line for the effective PD chain (derived from 
the CMC) then lies in the neighbourhood of a corresponding point in the IORD-E line (of the 
PD obtained from an ordered lattice). The point for the ordered lattice acts as an ‘attractor’ 
and as the scaling goes on the point corresponding to any CMC eigenvalue is eventually 
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attracted and ultimately collapses onto a specific point on the invariant line for the ordered 
chain. If we study the flow in the parameter space only, we need to know the precise 
value of the energy eigenvalue being investigated. Quasiperiodic systems in general exhibit 
highly fragmented band structure, and any direct diagonalization of finite-size matrices may 
yield eigenvalues that fall in the vicinity of a gap in the spectrum for the infinite chain 
as mentioned earlier. The invariant in this case blows up under iteration and the desired 
flow pattern cannot be obtained. A simultaneous study of the behaviour of the invariant 
together with the flow of E and t values does not necessitate an exact determination of the 
eigenvalues. We thus emphasize the fact that the basic qualitative nature of all the CMC 
eigenstates should be the same as that for an ordered chain. 

3.2. The on-site model 

This model is defined by making E ,  = E? and E P  = €8, with tL = ts. Now it becomes 
interesting to perforni a little easy algebra to see that the typical pattern E$) # e!) = E(")  

signalling the onset of an 'ordered-like' behaviour is established in the case of the resulting 
effective PD chain not at n = 0, but at n = 1. That is. the 'input' into the recursion relations 
(3) for a scaled version of the effective PD chain becomes the same as if they were obtained 
from an ordered chain. However, once the pattern is set, we can have an identical invariant 
for the two cases by suitably choosing the values of E and t in the two cases (CMC and 
ordered chain), and our previous argument follows in an identical fashion. 

Y 

Two comments in this regard are in order. 

(1) It should be appreciated that IOD is not obtained by simply putting the ordered 
limit in the invariant for the true PD sequence. Rather, IORD is obtained by transforming 
an ordered lattice into a PD lattice, thereby changing only the appearance of the ordered 
lattice while keeping the exact nature of the energy spectrum and the eigenfunctions intact. 
The evolution of the parameter space for this transformed lattice, though using the set of 
recursion relations of a PD chain, thus brings out the exact nature of the wavefunctions of 
an ordered chain. So. to our mind, identifying ICMC with this IORD is a meaningful idea to 
identify the true character of the eigenstates. 

(2) If we scan all possible energies for a CMC, we can hit upon energy values that are 
either in a gap, or, an eigenvalue. For E in a gap ICMC diverges as the iteration proceeds, and 
therefore is not at all an 'invariant'. For the eigenvalues with a non-zero value of the density 
of states, since one can always figure out a truly ordered chain in the 'background' that for 
some combination of E and t gives rise to the same invariant, and hence qualitatively the 
same flow pattern in the parameter space, the CMC eigenfunctions can only be of extended 
type. The possibility of any localized/critical wavefiinctions is then excluded. 

In conclusion, we have drawn attention to the remarkable fact that, in  spite of having no 
translational invariance, a quasiperiodic CMC should have all its eigenfunctions extended. 
We have proceeded in a novel analytical way followed by intuitive arguments. Other 
generalizations in the copper mean family are also strong candidates for having similar 
spectral properties. Work in this direction is in progress. 
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